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▪ To understand if EEG-based real movement can be replaced with EEG-based imaginary 
movement in order to use Motor Imagery tasks in Brain-Computer Interface systems.



Thesis objective

The brain activations obtained with real 

movement are very similar to those 

obtained with imaginary movement

No distinction at classification level

▪ The project was based on two benchmark Deep Learning models [Schirrmeister et al. (2017)].

1. Repeatability experiments with the reference dataset

2. Reproducibility experiments on another dataset

3. Test of the best model on real and imaginary movements

A. Input variation from raw to time-frequency representation

B. Architecture variation

Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K., Tangermann, M., 

et al. (2017). Deep learning with convolutional neural networks for EEG decoding and visualization. Human 

Brain Mapping, 38(11), 5391–5420.
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Current challanges in EEG processing

▪ Low Signal-to-Noise Ratio (SNR)

▪ EEG is a non-stationary signal

▪ High intra and inter-subject variability

Improving EEG processing with Deep Learning:

▪ Automatic feature extraction without a domain expert

▪ More expressive features than hand-crafted ones

▪ Extraction of both high-level features and latent dependencies
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Shallow and Deep ConvNet

Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., 

Eggensperger, K., Tangermann, M., et al. (2017). Deep learning with 

convolutional neural networks for EEG decoding and visualization. Human 

Brain Mapping, 38(11), 5391–5420.

5/16



Trialwise and cropped training

Time series input

Trialwise training

Cropped training
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Dataset

Name # subject classes real imaginary

BCI IV 2a [1] 9 Left/right hand, 

feet, tongue

BCI IV 2b [2] 9 Left/right hand

PhysioNet [3] 30 Left/right hand

A. Repeatability experiments. Best architecture: Shallow ConvNet

B. Reproducibility experiments. Best training mode: cropped training

C. Core experiments:

raw signal with Shallow ConvNet (cropped training)

time-frequency images with Shallow ConvNet (trialwise training)

time-frequency images with Shallow ConvNet variation  (trialwise training)
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Core experiments

▪ Dataset: PhysioNet.
Classes: real and imaginary movement of left hand and right hand

▪ Model: Shallow ConvNet with cropped training

▪ Number of subjects: 30 (45 trials for each type of movement)

Test number Classes description # classes

1 Left/right-hand 

real movement

2

2 Left/right-hand 

Imaginary movement

2

3 Left/right-hand 

real and imaginary

movement

4

4 Left/right-hand 

(no distinction between

real and imaginary)

2
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Core experiments – result with raw signal

▪ Dataset: PhysioNet.
Classes: real and imaginary movement of left hand and right hand

▪ Model: Shallow ConvNet with cropped training

▪ Number of subjects: 30 (45 trials for each type of movement)

Left/right

Real

(test 1)

Left/right

Imaginary

(test 2)

Left/right

Real and imaginary

(test 3)

Left and right hand

(test 4)

mean 67,9% 66,8% 60% 73%
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Core experiments – input variation

▪ Generation of time-frequency images for each window extracted from the EEG signal

▪ Wavelet advantage: allow a multi-scale analysis

Complex sine wave= 𝑒𝑖 2 𝜋 𝑓 𝑡

Gaussian = 𝑒 Τ−𝑡2 2𝑠2

Complex Morlet wavelet = 𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑠𝑖𝑛𝑒 𝑤𝑎𝑣𝑒 ∙ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

s=
𝑛

2 𝜋 𝑓

Time-frequency trade-off

4 – 8 Hz

8 – 13 Hz

13 – 30 Hz

>30 Hz
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Core experiments – input variation
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Advantages of time-frequency representation:

▪ identifies different frequency patterns over time

▪ mitigates the problem of small dataset size

11/16



Core experiments – input variation

.
.

.

64 time-frequency images

of all channels
5 time-frequency images

Motor cortex
Somatosensory

cortex
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Trialwise training with pseudo-3D convolution



Core experiments – result with time-frequency images

▪ Dataset: PhysioNet.
Classes: real and imaginary movement of left hand and right hand

▪ Model: Shallow ConvNet with trialwise training

▪ Number of subjects: 30 (45 trials for each type of movement)

Left/right

Real

(test 1)

Left/right

Imaginary

(test 2)

Left/right

Real and imaginary

(test 3)

Left and right hand

(test 4)

Mean raw 67,9% 66,8% 60% 73%

Mean 5 tf images 71% 67% 42% 76%
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Core experiments –
Multi layer feature fusion

▪ Verify if good relevant features can be extracted 
from the various layers to be used later for 
classification

▪ Shallow ConvNet variation:

1. classification layer removal

2. addition of a second convolutional block

3. merging the features at the end of the first and 
second convolutional blocks

4. classification with a fusion model
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Core experiments – result with feature fusion

▪ Dataset: PhysioNet.
Classes: real and imaginary movement of left hand and right hand

▪ Model: Shallow ConvNet with trialwise training

▪ Number of subjects: 30 (45 trials for each type of movement)

Left/right

Real

(test 1)

Left/right

Imaginary

(test 2)

Left/right

Real and imaginary

(test 3)

Left and right hand

(test 4)

Mean raw 67,9% 66,8% 60% 73%

Mean 5 tf images 71% 67% 42% 76%

Mean feature fusion 66% 64% 38% 72%
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Conclusions

▪ The left/right hand real movement is hardly discernible from the respective imaginary 
movement

▪ Time-frequency images identified significant feature from change in EEG rhythms

▪ Real movement seems to be easier to discriminate than the imaginary one

▪ Pre-train the Shallow ConvNet variation and then perform a fine-tuning to train only the 
fusion model or the deeper layers

▪ Use a group-based approach

▪ Divide the tensor of time-frequency images into multiple frames and use a Long Short-
Term Memory to extract temporal dependencies between frames

Future works
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