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The goal of this work is to implement an EEG processing pipeline in order to distinguish between

the motor imagery of different parts of the body.
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EEG BASED BCIs

Electroencephalogram:

▪ To record brain activities

▪ Different standards

▪ Spatial information (central cortical area)

▪ Frequency bands 2: α (7-13 Hz), β (13-30 Hz)
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BCIs AND MOTOR IMAGERY

A BCI system is composed by three blocks 3:

▪ Signal Acquisition Module

▪ Signal Processing Module

▪ Application Module

The translation of an EEG signal into a
command is based on the concept of
Motor Imagery.
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DATASETS

▪ Physionet MM/MI Dataset 3,4(109 s.): movement execution and imagination of feet and hands.

▪ BCI Competition IV–2A 5(9 s.): motor imagery of hands, feet and tongue.

▪ BCI Competition IV–2B 5(9 s.): hands motor imagery.
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Population based study → heterogeneous data

In order to suppress noises and reduce the heterogeneities:

▪ Band Pass filter: 7 – 30 Hz → α and β frequency bands

▪ Z-score Normalization (run wise) : 𝑋𝑛𝑒𝑤 =
𝑋−𝜇

𝜎

PREPROCESSING
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Each region of the brain is related to different mental tasks, thus various channel selection
methods are explored and compared:

CHANNEL SELECTION

Physionet Dataset montage

▪ Motor Channels (C3, C4, Cz).
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▪ Motor Channels (C3, C4, Cz).

▪ Pearson and Spearman correlation indices:

I. For each sample the correlation matrix between electrodes

is computed.

II. The average correlation matrix is extracted trom each trial.

III. We consider only those pairs of channels that have a

correlation index that is lower than a fixed threshold 6,7.

▪ Combination of both methods.

▪ All channels in the montage.
Physionet Dataset montage
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▪ Selected channels → spatial information.

▪ Frequency band selection → different mental tasks.

Thus the Power Spectral Density is estimated using the Welch’s method 8.

FEATURE EXTRACTION

For each selected channel / frequency band:

➢ Power

➢ Mean

➢ Standard Deviation

Then, a min-max standardization is carried out.
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▪ Physionet MM/MI Dataset: 105 subjects (+4 removed)  → 4725 instances

▪ BCI Competition IV–2A: 9 subjects → 2592 instances

Three classifiers are trained :

▪ Split:  70 training (30% of training data as validation set) : 30 test 

▪ Grid seach

CLASSIFICATION METHODS (I)

SVM

▪ 𝛾 =
1

#𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∙ 𝜎

▪ 𝐶 = 0.01, 0.1, 1.0, 10.0

▪ 𝐾𝑒𝑟𝑛𝑒𝑙 = {𝐿𝑖𝑛𝑒𝑎𝑟, 𝑅𝐵𝐹}

KNN

▪ 𝐾 = {3, 5, 7, 11, 21, 31}

MLP

▪ 2 Hidden Layers: 64 
and 32 neurons (tanh)

▪ Binary Cross entropy

▪ Adam (0.001)

▪ 300 Epochs

▪ Sigmoid
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In the second part two deep models are trained from scratch using the preprocessed EEG signal
from each trial as input.

CLASSIFICATION METHODS (II)

(I) CNN

(II) CNN+LSTM
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Experiments on the Physionet Dataset

EXPERIMENTAL RESULTS – Tasks

MM Hands motor movement of the right and the left hands.

MI Hands motor imagery of the right and the left hands.

MM Hands / Feet motor movement of both hands and feet.

MI Hands / Feet motor imagery of both hands and feet.

Experiments on the BCI Competition IV-2A Dataset

R. / L. Hands motor imagery of the right and the left hands.

L. Hand / Feet motor imagery of the left hand and both feet.

R. Hand / Feet motor imagery of the right hand and both feet.

Feet / Tongue motor imagery of both feet and tongue.
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TASK

MM Hands MI Hands MM Hands / Feet MI Hands / Feet

BEST CHANNEL

SEL. METHOD

Spearman + 

Motor Channels
All All

Pearson + 

Motor Channels

BEST 

MODEL

SVM 

{Linear, C=10.0}

SVM 

{Linear, C=1.0}

SVM 

{Linear, C=10.0}
MLP

ACCURACY 0.55 0.55 0.63 0.57

EXPERIMENTAL RESULTS – Physionet Dataset

BEST CHANNEL

SEL. METHOD
Motor Channels Motor Channels

Spearman + 

Motor Channels

Spearman + 

Motor Channels

ACCURACY 

CNN
0.56 0.56 0.57 0.58

ACCURACY 

CNN+LSTM
0.61 0.61 0.69 0.61
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EXPERIMENTAL RESULTS – BCI IV-2A Dataset

TASK (Motor Imagery)

R. / L. Hands L. Hand / Feet R. Hand / Feet Feet / Tongue

BEST CHANNEL

SEL. METHOD
All All All All

BEST 

MODEL

SVM 

{Linear, C=10.0}

SVM 

{Linear, C=10.0}

SVM 

{RBF, C=10.0}

SVM 

{Linear, C=10.0}

ACCURACY 0.67 0.69 0.60 0.70

BEST CHANNEL

SEL. METHOD
All All All All

ACCURACY 

CNN
0.67 0.67 0.64 0.65

ACCURACY 

CNN+LSTM
0.74 0.76 0.72 0.78
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▪ The proposed channel selection method is not always able to extract a subset of uncorrelated
channels. Different experimental settings between datasets:

▪ Nature of the stimulus

▪ Standard of the headset

▪ Classify EEG from different subjects is a hard task.

▪ Classifying an imagined movement is not more difficult than classifying an executed movement.

▪ The MI of different parts of the body can be more or less complex to classify.

▪ Deep models outperform traditional classifiers (CNN+LSTM).

DISCUSSION AND CONCLUSIONS
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▪ Record different physiological signals into the university laboratory and implement an
integrated sistem in order to analyze them (Electroencephalographic signal, Galvanic Skin
Response, Electromiographic Signal, …) .

▪ Single subject study:

▪ Features of different domains (CSP, Hjorth Parameters).

▪ Outliers detection.

▪ Compare different standardization methods and channel selection algorithms.

▪ Investigate some data augmentation techniques and train different classification models
(Gradient Boosting algorithms, Bidirectional / Attention-Based LSTM, Ensemble CNN).

FUTURE WORKS
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Thanks for the attention

Andrea Turano

Badge Number: 816462
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CLASSIFICATION METHODS – Deep Models Parameters

PARAMETER VALUE

Activation Function ReLU

Optimizer Adam (0.001)

Dropout Rate 0.2

Epochs 300

Loss Binary Crossentropy

Number of filters (conv. layer) 8

Kernel Shape (temporal conv.) 3

Pool Size 15


