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1. Background



Electroencephalographic (EEG) signal [1/3]

A Flexible Pipeline for Electroencephalographic Signal Processing and
Management

• Electroencephalography →
recording & interpretation of the
neural signal

• Electroencephalogram → records
the brain electric potentials →
electroencephalographic (EEG)
signals
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Electroencephalographic (EEG) signal [2/3]

1. Characteristics
• Time-series

• Electrodes/channels
• Frequency bands → rhythms

2. Advantages [1, 2, 3, 4, 5]

• High time resolution

• Relative low-cost
• Wearable devices
• Non-intrusive
• Spatial resolution
• Intrinsic characteristics
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Electroencephalographic (EEG) signal [2/3]

1. Characteristics
• Time-series
• Electrodes/channels
• Frequency bands → rhythms

2. Advantages [1, 2, 3, 4, 5]

• High time resolution
• Relative low-cost
• Wearable devices
• Non-intrusive
• Spatial resolution
• Intrinsic characteristics

Original pic from:
https://www.firstclassmed.com/articles/2017/eeg-waves
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Electroencephalographic (EEG) signal [3/3]

1. Characteristics
• Time-series
• Electrodes/channels
• Frequency bands → rhythms

2. Advantages [1, 2, 3, 4, 5]

• High time resolution
• Relative low-cost
• Wearable devices
• Non-intrusive
• Spatial resolution
• Intrinsic characteristics

Awesome, but ...
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Open challenges [1/2]

A Flexible Pipeline for Electroencephalographic Signal Processing and
Management

Categories
1 Signal pre-processing → extraction of neural signal + data dimensionality issue
2 Normalization → data heterogeneity
3 Feature computation and management → feature types and their selection
4 Classification → brain states
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Open challenges [1/2]

A Flexible Pipeline for Electroencephalographic Signal Processing and
Management

Categories
1 Signal pre-processing → extraction of neural signal + data dimensionality issue
2 Normalization → data heterogeneity
3 Feature computation and management → feature types and their selection
4 Classification → brain states

Lack of Standards [6, 9]
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Open challenges [2/2]

Solve issues + better EEG understanding + application?
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Open challenges [2/2]

A Flexible Pipeline for
Electroencephalographic Signal

Processing and Management

Categories
1 Signal pre-processing
2 Normalization
3 Feature computation and

management
4 Classification
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2. Main Dataset



1. Main Dataset [1/2]

EEG Motor Movement/Imagery Dataset

Why?
• Case study: motor related

experiment

• Brain computer interfacing &
rehabilitation

• Peculiar characteristics:
• Central cortical area
• Rhythms → α and β
• Good motor imagery performer →

70% task accuracy [8]
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1. Main Dataset [2/2]

EEG Motor Movement/Imagery Dataset

Characteristics
• Available at https://physionet.

org/content/eegmmidb/1.0.0/
• 109 subjects - 3 (technical issues)
• left/right hand (LH, RH) motor

movement (MM) and imagination
(MI), eyes closed (CLOSE)

• Instances:
• MM: 4924 (2469 LH)
• MI: 4915 (2479 LH)
• CLOSE: 106
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3. Proposals



3.1 Signal
Pre-processing



3.1 Signal Pre-processing
Literature

Literature
• Noise removal
• Independent component analysis

[10] → requires stationary signals,
multi-channel

• Discrete wavelet transform [11] →
spectral properties overlapping,
multi-source

• Loss of actual neural signal
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3.1 Signal Pre-processing
Literature

Literature
• Noise removal
• Independent component analysis

[10] → requires stationary signals,
multi-channel

• Discrete wavelet transform [11] →
spectral properties overlapping,
multi-source

• Loss of actual neural signal

Starting point
• 6 months period abroad at Digital

Signal Processing laboratory,
Universitat de Vic (Supervisor Jordi
Solé-Casals)

• Dinarès-Ferran et al. [12]
• Empirical Mode Decomposition

(EMD) [13] → oscillatory modes =
Intrinsic Mode Functions (IMFs)

• Recombine IMFs → artificial trials
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3.4 Signal pre-processing
Changing Perspective

Proposal
• Change of perspective → find actual

neural signal
• EMD → Multivariate Empirical

Mode Decomposition (MEMD) [14]
• Intrinsic Mode Functions (IMFs) →

most relevant?
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Proposal
• Change of perspective → find actual

neural signal
• EMD → Multivariate Empirical

Mode Decomposition (MEMD) [14]
• Intrinsic Mode Functions (IMFs) →

most relevant?

Research questions
1 How does the selection of relevant

oscillatory modes of the EEG signals
affect the neural dynamics of these
data as well as their analyses?

2 What is the impact of the
recombination of relevant IMFs
extracted from different
experimental trials, i.e., recording
blocks, on physiological signals?
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3.1 Signal Pre-processing
Multivariate Empirical Mode Decomposition
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3.1 Signal Pre-processing
Multivariate Empirical Mode Decomposition
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3.1. Signal Pre-processing
Relevance & Recombination

Relevance
• Entropy → selection criterion
• Reliability of signal reconstruction

using only the relevant IMFs
• Simulated dataset [15]
• Pearson correlation coefficient
• Signal similarity

• Maintains brain dynamics
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3.1. Signal Pre-processing
Relevance & Recombination

Relevance
• Entropy → selection criterion
• Reliability of signal reconstruction

using only the relevant IMFs
• Simulated dataset [15]
• Pearson correlation coefficient
• Signal similarity

• Maintains brain dynamics

Recombination
• Dinarés-Ferran et al. → recombine

IMFs → artificial trials
• Trial substitution
• Relevant IMFs
• Tested on the same dataset
• Coherence → double median

absolute deviation
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3.1 Signal Pre-processing
Data Augmentation [1/2]

Steps
1 Original data: 45 LH and RH MI per

subject
2 Bandpass (0.5 - 100 Hz) and notch

(50 Hz) filtering
3 MEMD for each subject and trial
4 Time-frequency images in the 8 - 30

Hz range (α and β)
5 100 combinations for data

augmentation with different
percentages

Classification
1 Subject-based (24)
2 Electrodes: C{1,2,3,4,z}
3 Rhythms: α and β

4 Power Spectral Density (PSD) →
Morlet wavelet convolution

5 Total features: 10

13



3.1 Signal Pre-processing
Data Augmentation [2/2]

Number of trials per condition

0 0 - rec 3 6 9 12 15 18 21

Subject RH LH RH LH RH LH RH LH RH LH RH LH RH LH RH LH RH LH

S001 34.09 47.83 31.82 47.83 32.00 46.15 32.14 44.83 29.03 43.75 26.47 42.86 24.32 42.11 25.00 41.46 23.26 40.91
S002 36.36 30.43 36.36 32.61 36.00 30.77 35.71 31.03 35.48 31.25 35.29 31.43 35.14 28.95 32.50 26.83 30.23 27.27
S004 27.27 26.09 27.27 26.09 24.00 23.08 21.43 20.69 19.35 21.88 17.65 20.00 16.22 19.74 15.00 19.51 13.95 18.18
S007 18.18 13.04 18.18 13.04 16.00 11.54 14.29 8.62 16.13 6.25 11.76 5.71 13.51 5.26 12.50 4.88 11.63 6.82
S010 38.10 20.83 38.10 20.83 35.42 18.52 37.04 16.67 30.00 18.18 30.30 16.67 30.56 15.38 28.21 14.29 28.57 14.44
S011 45.45 39.13 43.18 39.13 44.00 38.46 42.86 37.93 41.94 37.50 41.18 37.14 37.84 34.21 40.00 36.59 37.21 34.09
S012 29.17 42.86 31.25 42.86 31.48 39.58 31.67 37.04 30.30 35.00 27.78 33.33 28.21 33.33 26.19 30.77 24.44 30.95
S013 31.82 26.09 31.82 26.09 32.00 26.92 28.57 24.14 25.81 25.00 26.47 21.43 24.32 21.05 25.00 21.95 23.26 20.45

Error rate → the percentage of predicted values that have been wrongly classified for each class
Bold subjects → good MI performers
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3.1 Signal Pre-processing
Conclusions

Research questions
1 How does the selection of relevant

oscillatory modes of the EEG signals
affect the neural dynamics of these
data as well as their analyses?

2 What is the impact of the
recombination of relevant IMFs
extracted from different
experimental trials, i.e., recording
blocks, on physiological signals?
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3.1 Signal Pre-processing
Conclusions

Research questions
1 How does the selection of relevant

oscillatory modes of the EEG signals
affect the neural dynamics of these
data as well as their analyses?

2 What is the impact of the
recombination of relevant IMFs
extracted from different
experimental trials, i.e., recording
blocks, on physiological signals?

Future works
• Test on other paradigms
• Detect noisy/faulty trials
• On-line procedure
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3.2
Normalization



3.2 Normalization
At a glance

Literature [16, 17, 18]
• Little to no information
• Lack of standard procedures
• Subject-based analyses
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1 What is the impact of the

application of normalization
strategies on EEG data?

Proposal
• Mitigate heterogeneity
• Min-max and Z-score normalization
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3.2 Normalization
At a glance

Literature [16, 17, 18]
• Little to no information
• Lack of standard procedures
• Subject-based analyses

Research question
1 What is the impact of the

application of normalization
strategies on EEG data?

Proposal
• Mitigate heterogeneity
• Min-max and Z-score normalization

Preliminary results
• Intra-subject heterogeneity
• Inter-subject heterogeneity
• Best: Z-score
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3.3 Feature
Computation

and
Management



3.3 Feature Computation and Management
Literature

Literature
• A priori selection
• Principal Component Analysis

(PCA) [19]
• Evolutionary Feature Selection

(EFS) [20]
• Supervised
• External measures
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3.3 Feature Computation and Management
Changing Perspective

Proposal
• Feature variety
• Relevant features
• Evolutionary Feature Selection

(EFS): Particle Swarm Optimization
(PSO), Genetic Algorithm (GA),
Simulated Annealing (SA)

• Modified GA
• Novel stopping criteria and fitness

functions
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3.3 Feature Computation and Management
Changing Perspective

Proposal
• Feature variety
• Relevant features
• Evolutionary Feature Selection

(EFS): Particle Swarm Optimization
(PSO), Genetic Algorithm (GA),
Simulated Annealing (SA)

• Modified GA
• Novel stopping criteria and fitness

functions

Research questions
1 What effect does a variety of feature

types present in the characterization
of the EEG signals?

2 How do evolutionary algorithms
provide a data-driven feature
selection?

3 When conducting the evolutionary
feature selection optimization
problem, what is the effect of using
both supervised and unsupervised
learning strategies and a set of
stopping criteria?
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3.3 Feature Computation and Management
Contributions

Proposals EFS comparison [21] GA heterogeneous [22]
Heterogeneous feature set Time, frequency, time-

frequency domain, statistical
measures

Time, frequency, time-
frequency domain

Feature selection PSO, GA, SA GA
Learning model SVM SVM, K-means
Fitness functions accuracy, number of features accuracy, silhouette, number

of features
Stopping criteria Number of generations Number of generations, maxi-

mum time, performance
Normalization Min-max, Z-score Z-score
Datasets Motor movement/imagery Motor movement, cognitive

workload, mix
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3.3 Feature Computation and Management
EFS Comparison

Evidences
• Efficacy of a variety of

features (1280) computed
on each channel (64)

• Best PSO and GA
• Consider a trade-off
• Z-score
• Comparison

Domain Features
Time Hjorth activity, mobility and

complexity parameters
Frequency Power Spectral Density (PSD)

estimated through Welch’s
method

Time-frequency PSD extracted through Morlet
wavelet convolution

Statistical Mean, standard deviation,
skewness, excess kurtosis,
median, low/high percentile
and trimmed mean/standard
deviation
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3.3 Feature Computation and Management
GA heterogeneous [1/5]
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3.3 Feature Computation and Management
GA heterogeneous [2/5]

Characteristic dataset A [23, 25] dataset B [24, 25]
resource https://physionet.

org/content/eegmat/1.
0.0/

https://physionet.
org/content/eegmmidb/
1.0.0/

experiment cognitive workload motor/imagery
# participants 36 109
# recordings per subject 2 14
conditions REST, MAT CLOSE, LH, RH
electrode positioning 10/20 international sys-

tem
modified 10/10 interna-
tional system

recording sampling rate 500 Hz 160 Hz
pre-processing bandpass (0.5 - 45 Hz) and

notch (50 Hz) filtering
none

dataset GEN(170x135) = mix(dataset A(68x209), dataset B(5033x576))
Conditions: REST = resting state with eyes opened, MAT = arithmetic calculation, CLOSE = resting state with closed eyes, LH = movement of left hand, RH =

movement of right hand.
22
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3.3 Feature Computation and Management
GA heterogeneous [3/5]

Fitness function
1 fS1(c) = accuracy, fU1(c) = silhouette

2 fS2(c) = λ(1 − fS1(c)) (1 − λ)(1 − Nsf
Nif

),

fU2(c) = λ(1 − fU1(c)) (1 − λ)(1 − Nsf
Nif

)

3 fS3(c) = fS1(c)(1 − Nsf
Nif

), fU3(c) =

fU1(c)(1 − Nsf
Nif

)

Stopping criteria
• Maximum time parameter
• Dynamic maximum generations based on

fitness check value
• 80% generation, global best = local best
• Maximum number of generations ≥ 1000

Dataset
• GEN dataset (170x135)
• Channels: Fp{1, 2}, F{3,4,7,8,z}, C{3,4,z}, P{3,4,z}, O{1,2}
• Frequency: θ, α, β

• Features: 15 electrodes x (3 Hjorth parameters + 3 frequency bands x (1 PSD Welch + 1 PSD Morlet))
23



3.3 Feature Computation and Management
GA heterogeneous [4/5]

ID Nsf Acc gAcc waF1
MAT REST CLOSE RH LH

GEN-ALL 135 1.00 1.00 1.00 0.81 0.81 0.82 0.81
GEN-PCA 5 0.89 0.98 0.90 0.78 0.78 0.66 0.64
GEN-fS1(c) 77 1.00 1.00 1.00 0.86 0.86 0.86 0.86
GEN-fS2(c) 51 1.00 1.00 1.00 0.75 0.75 0.75 0.75
GEN-fS3(c) 19 1.00 1.00 1.00 0.92 0.92 0.92 0.92

Consider GEN dataset with the supervised approach.
gACC = global accuracy, waF1 = weighted average F1-score, Nsf = number of selected features
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3.3 Feature Computation and Management
GA heterogeneous [5/5]

ID Nsf Silhouette
GEN-ALL 135 0.51
GEN-PCA 5 0.50
GEN-fU1(c) 32 0.60
GEN-fU2(c) 44 0.26
GEN-fU3(c) 14 0.61

Consider GEN dataset with the unsupervised approach.
Nsf = number of selected features
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3.3 Feature Computation and Management
Conclusions

Research questions
1 What effect does a variety of feature

types present in the characterization
of the EEG signals?

2 How do evolutionary algorithms
provide a data-driven feature
selection?

3 When conducting the evolutionary
feature selection optimization
problem, what is the effect of using
both supervised and unsupervised
learning strategies and a set of
stopping criteria?

Future works
• A priori knowledge → spatial

relationships
• Weight silhouette score
• Hybrid application of supervised

and unsupervised approaches
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3.4 Classification



3.4. Classification
At a glance

Literature
• Classic ML techniques [26]
• eXtreme Gradient Boosting

(XGBoost) [27]
• Deep learning [6]
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3.4. Classification
At a glance

Literature
• Classic ML techniques [26]
• eXtreme Gradient Boosting

(XGBoost) [27]
• Deep learning [6]

Research questions
1 What are the advantages and disadvantages

of applying classical machine learning
techniques to the EEG signals?

2 What could be the impact of input
formulations on deep learning models,
wanting to maintain the characterization of
the EEG data over time, frequency, and
space?

Proposal
• Assess relevant features with

XGBoost
• Novel input formulation for deep

learning architectures
• Maintain time, frequency, and space

information
• Exploit relevant IMFs
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3.4. Classification
Interesting results [1/2]

XGBoost application
• On Z-scored MM (4924x1280) and

MI (4025x1280)
• Parameter tuning
• Accuracy: MM = 65.0%, MI = 60.9%

• Use relevant features as input to
SVM

• Accuracy: MM = 68.6% (cubic), MI =
64.4% (quadratic)
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3.4. Classification
Interesting results [1/2]

XGBoost application
• On Z-scored MM (4924x1280) and

MI (4025x1280)
• Parameter tuning
• Accuracy: MM = 65.0%, MI = 60.9%
• Use relevant features as input to

SVM
• Accuracy: MM = 68.6% (cubic), MI =

64.4% (quadratic)

Motor Movement
Method SVM model Selected features Accuracy (%)
GA trade-off cubic 646 67.8
PSO trade-off quadratic 675 68.0
XGBoost cubic 640 68.6

Motor Imagery
Method SVM model Selected features Accuracy (%)
PSO trade-off quadratic 714 64.0
XGBoost quadratic 640 64.4

28



3.4. Classification
Interesting results [2/2]
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3.4. Classification
Interesting results [2/2]
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3.4. Classification
Conclusions

Research questions
1 What are the advantages and

disadvantages of applying classical
machine learning techniques to the
EEG signals?

2 What could be the impact of input
formulations on deep learning
models, wanting to maintain the
characterization of the EEG data
over time, frequency, and space?

Conclusions
• Classical ML efficient → flexibility
• eXtreme Gradient Boosting has

matching features to EFS proposal
• Novel input lacks testing

30



4. Discussion & Conclusions



4. Discussion & Conclusions

Brief discussion
• Many other experiments
• Capture EEG characteristics
• Flexible pipeline → four modules
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4. Discussion & Conclusions

Brief discussion
• Many other experiments
• Capture EEG characteristics
• Flexible pipeline → four modules

Conclusions
• Further testing
• Generalizability
• Add new modules and techniques

31



Thank you!
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